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Abstract 

In what we call the ‘Hexad Algorithm’, for anisotropic variational data assimilation, a spatial 
covariance’s second moment, or ‘aspect tensor’, is decomposed at each location of a spatial 
computational lattice into six generalized grid line rank-one components (‘aspect weights’) that 
linearly recombine to form the original tensor. The selection of the six line directions is effected 
by an iterative precedure that is essentially a specialized variant of the classical Simplex Al-
gorithm of linear programming theory. The ‘hexads’, or sets of six integer 3-vector generators 
that define these line orientations, must conform to a particular fixed set of linear relation-
ships amongst them in order to be valid. Hence, these relationships implicitly govern the way 
one hexad can transition through a change in a single generator to a neighboring hexad in 
the network they collectively constitute. The central task of the Hexad Algorithm is to guide 
each incremental step of this iterative search through the network of the valid hexads, seeking 
the desired configuration (which, apart from borderline cases, is unique) in which the implied 
six aspect weights are all nonnegative. Six one-dimensional smoothing operators, applied se-
quentially and each contributing its prescribed rank-one share, then enable a computationally 
efficient approximation of the effect of convolving gridded data with a locally quasi-Gaussian 
kernel that possesses, in its spatial second moment, the intended aspect tensor. 

The otherwise formidable combinatorial complexities involved at each step of the Hexad 
Algorithm are made more manageable whenever it becomes possible to exploit geometrical 
symmetries. These are conveniently supplied through a natural mapping from each of the pos-
sible line generators that can participate in the Hexad Algorithm to the set of seven nonnull 
elements of the Galois field, GF (8), of abstract algebra, with each member of the hexad map-
ping to a different element of that field. The Galois field elements in turn are associated with 
the seven ‘points’ of the finite projective geometry known as the ‘Fano plane’. We show, by 
exploiting the symmetries implied by these abstract algebraic structures, that the coded algo-
rithm resolving each aspect tensor into its hexad of rank-one components achieves a particularly 
simple and elegant form. 



1. Introduction

The Triad and Hexad algorithms were methods proposed as ways to efficiently generate
controlled anisotropic quasi-Gaussian smoothing filters in two and three dimensions respectively 
when the fundamental smoothing operations were the one-dimensional recursive line filters of 
Purser and McQuigg (1982), Hayden and Purser (1995), Wu et al. (2002), Purser et al. (2003a). 
These quasi-Gaussian filters could then be combined, by a positive superposition at a spectrum 
of different spatial scales, to serve as smooth background covariance operators. The resulting 
anisotropic filter algorithms, as described in Purser et al. (2003b), regulated the order of 
application of the sequential line operations organized into batches according to what were 
referred to as their ‘colors’. These colors were determined as follows. The ‘generator’ (shortest 
integer vector) that pointed along the direction of application of a given line smoother, when 
its components were reduced modulo-2, were noticed to always be one of three kinds in the 
two-dimensional (2D) case, or of seven kinds in the three-dimensional (3D) case, which were 
notionally regarded to be the ‘colors’ of each line of the triad and hexad. It was also noted 
that, in the 2D case, every well-formed triad consisted of a set of lines whose generators could 
be summed to zero and had a representative of each of the three colors. In the 3D case, the 
six generators of the hexad had a more complicated set of geometrical relationships, but still 
always had six distinct colors. Therefore, in the 3D case, the hexad as a whole could always 
be uniquely associated with the single color of the pallette of seven that was not represented 
amongst its generators. 

Now, since the line operators of each triad or hexad needed to be executed in some serial 
order, and it was important that the line operators at one stage of the sequence did not cross 
another line whose own operation was not yet completed, the organization of this sequence 
of operations by colors ensured that such collisions could never occur. These methods were 
referred to as the ‘Chromatic Triad’ and ‘Chromatic Hexad’ algorithms accordingly, and it was 
soon realized that such an association of distinct labels of three possible ‘colors’ in the simplest 
implementation of the 2D case, and seven in the 3D case, actually related to the distinct non-
null elements of the finite fields, or ‘Galois fields’ , GF (4) and GF (8), of abstract algebra, as 
determined by just the additive properties of these fields. (The operational 2D version used in 
the Real-Time Mesoscale Analysis (RTMA; see de Pondeca et al., 2011) actually uses a slightly 
more sophisticated ‘Blended Triads’ algorithm to preserve smoothness, and this requires four 
colors which can be associated with another Galois field, GF (9); the replacement of the recursive 
filters by the new beta filters removes the need of this added degree of sophistication.) 

A finite field also has a multiplicative and commutative (‘Abelian’) group structure. More-
over, the multiplications (excluding the null element, of course) of a finite field always form 
a cyclic group. It has since been realized that, in 3D and in 4D (where the relevant field is 
GF (16), with 15 non-null elements), the exploitation of the cyclic attribute of the group of 
multiplicative elements of these non-null elements can appreciably simplify the structure of the 
Hexad algorithm itself. In fact, for the far more complicated 4D ‘Decad algorithm’, that we 
shall treat in a companion note (Purser, 2020), the use of this attribute becomes practically 
indispensable. 
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2. The Fano plane 

The cursory description of the particular implementation of the Hexad method in Purser et 
al. (2003b) was given before the value of exploiting the multiplicative and cyclic attributes of 
the associated Galois field was recognized. Very closely related to the topic of finite fields is that 
of finite projective geometries. These were first introduced by Fano (1892) at about the time 
when Klein, Hilbert, Peano, Frege and other mathematicians of the period were engaged in the 
establishment of the axiomatic foundations of arithmetic and geometry. The simplest and most 
celebrated of Fano’s ‘geometries’ is the one comprising just seven ‘points’ and seven ‘lines’. This 
is normally referred to as the Fano plane (although he introduced many other finite geometries 
besides this simplest example). In their classic study, Veblen and Bussey (1906) expanded the 
study of finite projective geometries to those associated with a wider class of the Galois fields, 
introducing a notation ‘PG(d, p) for such geometries in d-dimensions with a prime-base p for 
the Galois field. In this notation, which has become standard, the Fano plane corresponds to 
PG(2, 2). In order to motivate the construction of the Fano plane we therefore begin with the 
construction of the Galois field that it is associated with. 

Suppose we project the infinite lattice of integer 3-vectors, by a reduction of their compo-
nents, modulo-2. We can regard each resulting 3-vector of zeros and ones as providing the coef-
ficients of a quadratic polynomial. One of the possible nonzero vectors serves as the ‘identity’, 
say g0(z) = (1, 0, 0) ≡ 1 + 0z + 0z 2. Then we can consider the effect of repeatedly multiply-
ing by some other ‘polynomial’, say, g1(z) = (0, 1, 0) ≡ 0 + 1z + 0z 2, subject to the additional 
assumption of the existence of an effective ‘polynomial modulus’, 

P (z) = 1 + z + z 3 ≡ 0. (2.1) 

In other words, we permit ourselves to extend the idea of modular arithmetic to the case where 
a nontrivial cubic polynomial becomes equivalent to the additive identity, 0, so that our set of 
interacting distinct polynomials need only consist of terms up to quadratic. Then the sequence 
of polynomial multiplications applied modulo-2 (component-wise) and modulo-P (z) (for each 
whole polynomial), leads to the following cyclic sequence of implied polynomials: 

g0(z) = (1, 0, 0) (2.2a) 
g1(z) = (0, 1, 0) (2.2b) 
g2(z) = (0, 0, 1) (2.2c) 
g3(z) = (1, 1, 0) (2.2d) 
g4(z) = (0, 1, 1) (2.2e) 
g5(z) = (1, 1, 1) (2.2f) 
g6(z) = (1, 0, 1). (2.2g) 

Clearly, any generalized grid line generator, an irreducible† integer 3-vector, g, after being 
reduced modulo-2 to a 3-vector of only ones and zeros, can be matched with one of these 
polynomials, gk, and hence can take the polynomial’s suffix k as its own characteristic ‘color’. 

† An integer vector is ‘irreducible’ if there exists no common divisor of all its components 
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Note that, modulus conditions on the construction of our polynomials do not invalidate the 
associative and commutative laws governing the multiplicative operation that the gk can be 
considered to inherit, so the color indices, k, serve as effective ‘logarithms’ that behave additively 
(modulo-7) when the elements gk multiply. 

The multiplications of our septet of polynomials form a representation of the cyclic group, 
C7. The various linearly-dependent triples, which we can call the ‘triads’ (since they behave 
exactly as they would be expected to in the Triad algorithm), are the sets of the form: 

Lj = {gj+1, gj+2, gj+4} , (2.3) 

(index additions implicitly modulo-7), the cyclic index pattern being exactly what we shall see 
to provide the definition of the ‘lines’ of the Fano plane PG(2, 2). Similarly, the generators of 
the hexad whose colors conform to this same (+1, +2, +4) pattern of indices are found also to 
be linearly dependent triads. In a given hexad, the particular triad whose generator indices 
correspond to the Fano ‘points’ of the unique Fano ‘line’ that has the same index as the hexad’s 
own ‘color’ will be denoted that hexad’s ‘L-set’. To summarize, the four triads of a given hexad 
correspond to some of the ‘lines’ of the Fano plane, and one of these four triads (the ‘L-set’ 
triad), regarded as a Fano ‘line’ has the same index as the color of the hexad itself. 

This self-dual geometry is shown in a version of its conventional presentation in Fig. 1, with 
its seven points (labeled from g0 to g6 in the small disks) and seven lines that link triplets of 
these points (drawn as the connecting lines or curves, and which it is also convenient to number 
from 0 to 6). 

L2

L1

L4

L3
L5

L6

L0

g0

g1

g2

g3

g4

g5 g6

Figure 1. A conventional depiction of the Fano plane with seven points (gi, shown by the small colored rings) 
and the directed lines joining them (Lj , shown by the arrowed curves). 

We see from the figure that every pair of points is connected uniquely by one of the lines, 
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to which belongs yet another (but only one) of the points. Conversely, every pair of lines 
intersects at a unique point, and one other line also shares this intersection. A more subtle 
property of this geometry (implied by the multiplicative Galois field structure) is the fact that 
we can increment uniformly all the point and line labels, modulo-7, and the structure of the 
configuration remains unchanged. A structural symmetry of this kind is an example of an 
‘automorphism’. Thus, one group of automorphisms is isomorphic to C7, the cyclic group of 
order 7. This group of operations also preserves the cyclic ordering of the three points on each 
line, a directionality indicated in the diagram by the arrows on each of the lines. Another 
group of direction-preserving automorphisms, more immediately obvious from the figure, is the 
cyclic group of order 3 corresponding to applications of the ‘squaring automorphism’, which 
replaces each point’s label in the figure by the square of that label, modulo-7. For the special 
configuration shown in Fig. 1, this corresponds to a rotation of the figure by increments of 120◦ , 
which clearly continues to preserve the cyclic ordering of the points around each line. These two 
subgroups of the complete group of the order-preserving automorphisms they generate, which 
we shall denote ‘Aut+{PG(2, 2)}’, do not commute, so the direct product of them (which is 
commutative, since both C3 and C7 are) does not characterize Aut+{PG(2, 2)} even though the 
order of the group |Aut+{PG(2, 2)}| = 3 × 7 = 21. However, within this group, the right and left 
cosets of the subgroup of C7 are the same (sets C7g = gC7 for each g ∈ Aut+{PG(2, 2)}), making 
C7 (but not C3!) the ‘normal subgroup’ of the two factors, denoted, C7 C Aut+{PG(2, 2)}. This
allows us to formally characterize the order-preserving automorphism group as the ‘semi-direct 
product’: 

Aut+{PG(2, 2)} ∼= C7 o C3. (2.4) 

The symmetries of this restricted group of automorphisms play a guiding role in the construction 
of the simplest representation of the Hexad algorithm, as we discuss later. We also note here 
that a semi-direct composition analogous to (2.4) defines a restricted automorphism group in 
the 4D case, with C4 replacing C3 and C15 replacing C7, and respecting the implied symmetries 
in that case provides us with the tool we need to construct the Decad algorithm in a well-
organized and systematic manner; this will be discussed in a separate note. The larger group, 
Aut{PG(2, 2)}, of unrestricted automorphisms, whose operations do not necessarily preserve 
the cyclic ordering of points around lines (an example being an operation that mirror-reflects 
the figure 1) plays no role here, but we note for completeness that this larger group, which is 
usually referred to as ‘the automorphism group’ of PG(2, 2), has order |Aut{PG(2, 2)}| = 168. 

We can also invoke the ‘duality’ operation of switching the interpretation of ‘points’ and 
‘lines’ but simultaneously reversing the ordering of the indices, and, again the logical structure 
of the Fano plane configuration remains the same. Note that, given a distinguished index, i, 
the indices of the lines that pass through the point i, together with the indices of the points 
that belong to line i, collectively exhaust the full set of seven indices (obviously, this is true 
regardless of which i we deem to be ‘distinguished’). 

This traditional diagram of the Fano plane is a simple and compact representation, but it 
possesses the stylistic defect of failing to make obvious the fact that all the points are on an 
equal footing and the three-fold symmetry that we see by rotating the figure by 120◦ about 
the central point, 0, is not so immediately obvious when we mentally substitute one of the 
other points for the point that remains fixed. An alternative and equivalent picture in which 
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g0 g1

g2 g3

g4 g5

g6

1 2 3

3 6

5 2

1 4

4 5 6

L0

L1 L2

L3 L4

L5 L6

Figure 2. Alternative depiction of the Fano plane with seven points and the directed lines joining them (shown 
by the curly arrows). 

this symmetry is obvious, is the hexagonal seven-tile symmetric covering of an appropriately 
proportioned torus, depicted ‘unwrapped’ in Fig. 2 as a doubly-periodic planar map. Here, 
the ‘points’ are represented by each of the seven sets of the replicated hexagonal tiles of each 
number from 0 to 6. The ‘lines’ are represented by the junctions of the seven indicated clusters 
of three hexagons that meet where the curly arrows show the cyclic ordering corresponding to 
that shown in Fig. 1. The further visual advantage of this alternative depiction is that, in 
addition to showing the three-fold periodicity about any point, it shows equally that there is a 
definite cyclic ordering and three fold periodicity about any chosen ‘line’. 

Inspired by the connection relating the lattice-associated Galois field to the Fano geometry, 
we next elaborate on the structure of a hexad algorithm for the resolution of a given aspect 
tensor into its projected line-filter ‘weights’ (1D grid-relative aspect tensor components aligned 
with the orientation of each generalized line of the grid). As we shall see, the most elegant and 
symmetrical way to formulate the algorithm is to incorporate the symmetries exhibited by the 
Fano plane. 
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3. The Hexad algorithm formulated according to the symmetries of the Fano
geometry

As described in Purser et al. (2003b) each valid ‘hexad’ comprises a set of six integer 3-vector 
line-generators which, when augmented by their negatives, collectively form the twelve vertices 
of a squashed or distended cuboctahedron. This is equivalent to saying that this augmented set 
form the twelve midpoints of all the edges of a centered parallelepiped. Since a parallelepiped 
has eight vertices that we can write: 

{±a, ±b, ±c}, (3.1) 

each hexad therefore contains four distinct triads (not counting their negatives), of integer 
3-vectors, which we shall denote:

Lp ≡ {a − b, b − c, −a + c} (3.2a) 
Lq ≡ {a − b, b + c, −a − c} (3.2b) 
Lr ≡ {a + b, −b + c, −a − c} (3.2c) 
Ls ≡ {a + b, −b − c, −a + c}. (3.2d) 

These correspond geometrically to the four bisecting planes that each contain six vertices (each 
comprising a triad of generators and their negatives) of the cuboctahedron. If we suppose the 
‘color’ of the hexad (i.e., the color missing from its generators) conforming to the symmetry 
conventions of the Fano plane to be 0, we know that the colors of the four triads must be the 
Fano plane’s ‘lines’, L0 = {g1, g2, g4}, L1 = {g2, g3, g5}, L2 = {g3, g4, g6}, and L4 = {g5, g6, g1}, 
since these are the only ‘lines’ that do not contain the nonexistent g0 of this hexad of color 0. 
We can always choose the signs of the six generators of the hexad of color 0 such that 

g1 = g6 − g5 (3.3a) 
g2 = g5 − g3 (3.3b) 
g4 = g3 − g6, (3.3c) 

and organize the hexad of this color 0 into a tableau of the two-matrix form, � � � � 
K0 (g6, g5, g3)= . (3.4)
L0 (g1, g2, g4) 

A schematic sketch of this hexad is given in Fig. 3a, forming the corners of a squashed cuboc-
tahedron inscribed in the lattice of generators. More generally, if the ‘color’ of the hexad is j, 
the corresponding tableau will comprise the two-matrix form: � � � � 

Kj (gj+6, gj+5, gj+3)= . (3.5)
Lj (gj+1, gj+2, gj+4) 

We note that the first row, or what we shall call the ‘K-set’, comprises the elements whose 
indices are those of the Fano lines that pass through the point indexed with the color index of 
the hexad ( j, in this example), while the second row, or ‘L-set’, comprises the elements whose 
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indices are those of the Fano points that belong to the line with the index of the hexad. Also 
note that the ‘average’ (modulo-7) of the indices of the generators in each of the two rows of 
the tableau of (3.5) is always j, and the average in each column of the tableau is also always 
j itself, the hexad’s color. (This makes it very easy to deduce the colors of all the generators 
(and the color of the hexad itself) knowing only the color of one of the generators.) 

(a)

g6 g5

g3

-g2

-g4

-g1

g2

g4

g1

(b)

g5

g3

-g2

-g4

-g1

g2

g4

g1

g’0 = g3 - g1

-g’0

Figure 3. Schematic hexad of ‘color’ 0 (panel a), and the neighboring hexad of ‘color’ 6 (panel b) obtained by 
the single iteration of the hexad algorithm that discards old vertex, g6, and incorporates into the new hexad the 

vertex (of color 0) we call ‘g0 
0 ’. 

Since each pattern of elements in the K and L rows of the tableau are also collectively 
cyclic over the three entries, the transition rules we use to iterate the choice of hexad in search 
of the one that resolves a given hexad into six positive line-smoothing weights can also be 
made conveniently cyclic with this same period-three restriction, systematizing and somewhat 
simplifying the algorithm, as we discuss next. 

The 3D aspect tensor, A, is symmetric, and therefore requires six independent values to 
specify it. The iterative preliminary step in the Hexad algorithm aims to find the unique hexad 
(set of six generators structured and organized as we have discussed above) so that, when 
the apsect tensor is projected onto the outer products of the six generators of the hexad, the 
resulting 6-vector of weights, W , has only non-negative (and generally positive) components: X 

TA = gj gj Wj , Wj ≥ 0. (3.6) 
j 

If we assume the omitted generator that has the same index as the color of the hexad itself to 
be just the null vector, and its associated weight Wj to be zero, we can conveniently let the 
indices j in (3.6) range over all of the colors, 0 — 6. The iteration that resolves the hexad in 
this way proceeds from an arbitrary starting valid guess hexad, and examines the weights W 
that come from the projection of the aspect tensor onto its generators as in (3.6). Typically, 
the guess is not the correct hexad for this aspect tensor, A, and one or more of the weights Wj 

will be found to be negative – in which case, the algorithm picks the one which possesses the 
minimum (most negative) value, and determines whether its index corresponds to one from the 
K-set, or one from the L-set. 
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(a) Transition removing a generator from the K-set
In the case that the generator belongs to the K-set, then, let us suppose it is the first

member, i.e., gj+6 for a hexad of color index j. The color of the hexad is clearly changed to 
this same j + 6. The new matrix, K 0j+6, of generators comprising the K-set after the needed 
corrective step, is defined from the old K-matrix, Kj , by the rule: 

j+6 = Kj M6, 
0 (3.7)K 

where the matrix, M6, that causes a transition that replaces element gj+6 is, by the cyclic 
symmetry inherited from the Fano geometry, independent of j and is defined: ⎡ ⎤ 

0 1 0 
M6 = ⎣ 1 0 1 ⎦ . (3.8) 

0 −1 −1 

In terms of the explicit component generators, this rule is equivalent to: 

j+6 ≡0 = gj+5, gj+6 − gj+3, gj+5 − gj+3 , (3.9)00 0 
j+2K gj+5, gj+4, g 

� � � � 
and since we must maintain the corresponding L-set of generators to continue to satisfy the 
linear relationship corresponding (indices modulo-7) to (3.3a) — (3.3b), which in matrix form 
is just, 

L = KN , (3.10) 

for any associated pair of L and K matrices, where, ⎡ 
1 0 −1 ⎣N = −1 1 0 ⎦ , (3.11) 
0 −1 1 

⎤ 

we find that the new L-set after the transition that replaces the old generator of color j + 6 has 
for its members the columns of the new matrix: � � � �0L 000 −gj+6 + gj+5 + gj+3, gj+6 − gj+5, −gj+3 . (3.12)j+6 ≡ =gj , gj+1, gj+3

In Fig. 3 an example of the transition of exactly this kind is illustrated in the step that takes 
the hexad of panel (a) of the figure into the new hexad of panel (b). The cuboctahedral shape 
is clearly preserved, although it becomes squashed in a slightly different way. 

Note that, had it been either the second or third elements, gj+5 or gj+3, that needed to be 
replaced, then we should have used, in place of matrix M 6 to effect the transition, the matrices 
M5 or M 3 instead (also independent of j), where ⎡ ⎤ ⎡ ⎤ 

−1 0 −1 0 1 1 
M5 = ⎣ 0 0 1 ⎦ , M3 = ⎣ −1 −1 0 ⎦ . (3.13) 

1 1 0 1 0 0 

(These are simply cyclic rotations, of both rows and columns, of M 6 itself.) Note the period-
3 cyclic sequence of M -indices, or relative to j, the generator indices, involves a successive 
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doubling, modulo-7, which corresponds to the ‘squaring automorphisms’ in the subgroup C3 of 
Aut+{PG(2, 2)}, or course. The cyclic additive increments, modulo-7, of the hexad color index, 
j, corresponds to automorphisms that belong to the subgroup, C7, as discussed in section 2. 

(b) Transition removing a generator from the L-set
Let us now consider the form of the transition that occurs when it is one of the elements,

say gj+1, of the L-set that needs to be replaced. In this example, the new hexad will have 
the color index of the index of the replaced generator, j + 1, and so the new K-set matrix of 
generators will be denoted K 0 

j+1. The rule that generates it in this case is:

j+1 = Kj M1, 
0K (3.14) 

where ⎡ 
1 1 1 

⎤ ⎣M1 = 1 0 0 ⎦ , (3.15) 
−1 0 −1

and the new L-set, L0 j+1, will be given by the corresponding equation of the form (3.10). As
before, if other elements of the original L-set need to be replaced instead, gj+2 or gj+4, then 
the matrices M 2 or M4 for the transition are cyclic rotations of the rows and columns of M1. 
Explicitly: ⎡ 

−1 −1 0 0 0 1 ⎣M2 = 1 1 1 ⎦ , ⎣M4 = 0 −1 −1 ⎦ . (3.16) 
0 1 0 1 1 1 

⎤ ⎡ ⎤ 

Note the period-3 cyclic sequence of M -indices, or relative to j, the generator indices, again 
involves a successive doubling, modulo-7, of the color index, corresponding to the squaring 
automorphism, C3, of the Galois field elements that respresent the ‘points’ of the Fano plane. 

4. Remarks

An alternative presentation of the rules governing the six possible transitions out of one
hexad and into one of its neighbors is provided in the appendix, using just the three component 
generators of the initial K-set exemplified by a K0 for the color-0 case (since cyclic rotation of 
the indices of the g automatically provides the correct transition rules for the other cases). In 
the alternative presentation, the period-3 symmetries become more easily apparent. 

In practice, several iterative steps of these K-set or L-set transition rules need to occur 
before the vector of weights W has all its components non-negative (generally, one component 
of this 7-vector, the component corresponding to the final hexad’s own color, will be exactly zero 
and the rest will usually all be positive.) Excepting special non-generic borderline cases, the 
resulting hexad is unique, regardless of the point of departure for this iteration. An examination 
of the implications of the hexad algorithm constructed in this maximally symmetric form reveals 
that these transitions ensure that: 

(i) The change from hexad color j to color k, followed by the reverse transition back to color
j, leaves the final hexad of generators identical (including signs) to the original (invariance with 
respect to double-transpositions, or circuits of period two, in the space of hexads). 
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(ii) If colors i, j and k belong to a triad (e.g., if j = i + 1 and k = i + 3, modulo-7) then 
a transition from a hexad of color i, to one of color j followed by a transition to one of color 
k, and finally to color i, returns the hexad to its original state and preserves the signs of the 
generators (invariance with respect to circuits of period three). 

(iii) If a sequence of six transitions (such as the transitions from a hexad of color j to j + 6, 
j + 1, j, j + 6, j + 1, j, for example) that return the hexad back to its original, then, again, the 
signs of each generator remain unchanged (invariance with respect to circuits of period six). 

A careful study of the network formed by all the adjacent hexads reveals that its irreducible 
cycles comprise only those of periods two, three and six, so it seems that our Fano-inspired ver-
sion of the Hexad algorithm has the admirable property of always producing any given hexad in 
a unique configuration of its signed generators (which was not true of previous implementations 
of the hexad algorithm) provided the starting point of the iterations is always either the same, 
or else some other hexad previously derived from that same starting point. 

5. Summary and discussion 

We have described a new formulation of the ‘Hexad Algorithm’ for decomposing a given 3D 
symmetric positive-definite aspect tensor on a lattice into its six unique local line generators and 
corresponding projected rank-one aspect tensor contributions. The new formulation adheres 
strictly to the symmetries possessed by the associated Fano projective plane and Galois field, 
GF (8). A bonus of adopting these constraints is that the computer code in the new algorithm 
is relatively succinct. 

The motivation for this work has been to provide a supporting algorithmic framework for 
the production of a computationally efficient way to generate anisotropic and spatially inho-
mogeneous covariances, initially for NOAAs new 3D RTMA, but also for more general data 
assimilation applications later. The rank-one components of the aspect tensor are dealt with 
using quasi-Gaussian line filters. In the past the line filters used in NCEP’s Grid-point Statis-
tical Interpolation have been the ‘recursive filters’ (Wu et al., 2002). More recently, an effort 
has been made to replace those line filters by compact-support beta distribution lines filters, 
which are also of quasi-Gaussian form, but which are better suited for efficient parallelization. 
Another technical distinction between the recursive filters and the beta filters is that the former 
are self-adjoint but are neither perfectly conserving not perfect (value-preserving) smoothers in 
inhomogeneous conditions, while the latter filters, come in two mutually-adjoint forms, one of 
which is perfectly conserving, and its adjoint is a perfect value-preserving filter (when applied to 
a constant-value field) regardless of the spatial anisotropy of the aspect tensor. It appears that 
these complementary attributes of the mutually-adjoint forms of the new beta filters enables 
them to combine sequentially within algorithms of the Triad, Hexad, or Decad type, in such a 
way that the complete self-adjoint combination suffers no visible numerical noise at the bound-
aries between one polyad’s spatial domain and the next; this was not the case when employing 
the recursive filters, and necessitated additional measures (such as the replacement of the basic 
Triad algorithm with the more complicated ‘Blended Triads’ method employed in the present 
2D RTMA) in order to avoid the numerical noise. 
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Appendix A 

Summary of hexad transition rules in a notation that exhibits the C3 symmetry 

Without loss of generality, we can assume that the color of the initial hexad is 0, since, 
if it is any other color, we need only appropriately increment (modulo-7) the color indices of 
the generators, g, to acquire the transition rules in other cases. With this assumption, we 
might also want to see the structure of the transition rules that gives a clearer emphasis to the 
inherent period-3 structure that they possess, so, to this end, we alias the generators of the 
original K-set, K0, as follows: 

v0 = g6 (A.1a) 
v1 = g (A.1b) 5 

v2 = g3, (A.1c) 

so that the tableau of the starting color-0 hexad, and the corresponding matrix of colors of its 
generators, are: � � � � � � 

K0 

L0 
= 

v0,
v0 − v1, 

v1, 
v1 − v2, 

v2 

v2 − v0 
C0 = 

6 
1 

5 
2 

3 
4 

. (A.2) 

Then, in terms of these three initial generators, v, the hexads obtained by making transitions 
to neighbors of each of the colors other than 0, taken in the order that these colors present 
themselves in the original hexad’s tableau, and the colors in these new tableaux, are as follows: � � � � � � 

K6 v1, v0 − v2, v1 − v2 5 4 2 
= C6 = (A.3a)

L6 −v0 + v1 + v2, v0 − v1, −v2 0 1 3 � � � � � � 
K5 −v0 + v2, v2, −v0 + v1 4 3 1 

= C5 = (A.3b)
L5 −v0, v0 − v1 + v2, v1 − v2 6 0 2 � � � � � � 
K3 −v1 + v2, v0 − v1, v0 2 1 6 

= C3 = (A.3c)
L3 −v0 + v2, −v1, v0 + v1 − v2 4 5 0 � � � � � � 
K1 v0 + v1 − v2, v0, v0 − v2 0 6 4 

= C1 = (A.3d)
L1 v1 − v2, v2, −v1 2 3 5 � � � � � � 
K2 −v0 + v1, −v0 + v1 + v2, v1 1 0 5 

= C2 = (A.3e)
L2 −v2, −v0 + v2, v0 3 4 6 � � � � � � 
K4 v2, −v1 + v2, v0 − v1 + v2 3 2 0 

= C4 = . (A.3f)
L4 v1, −v0, v0 − v1 5 6 1 
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